Strong influence of test patterns on the perception of motion aftereffect and position.

نویسندگان

  • Fang Fang
  • Sheng He
چکیده

In a completely linear system, the behavior of a square wave pattern can be predicted by its sinusoidal components. However, we observed a complete breakdown of the linear system prediction in the perception of the motion aftereffect (MAE). The duration of the MAE was measured following a one-minute adaptation to a rotating radial grating. Three different luminance patterns were used for both the adaptation and test stimulus: (1) sine wave, (2) square wave, and (3) complex grating with the same Fourier amplitude spectrum as the square wave, but with randomized phases. The sine wave stimulus generated the highest magnitude MAE, followed by the random-phase complex grating, and lastly the square wave grating. To test whether the square wave grating is a weak adaptor or a weak test for the MAE, we performed a cross adaptation experiment in which the sine wave, square wave, and complex gratings were paired in seven ways. Results show that the strength of the MAE critically depended on the test pattern. Regardless of the adaptor, MAE strength is in a decreasing order with the test pattern as sine wave grating, complex grating, and square wave grating. Further experiments ruled out the possibility that differential MAEs between these conditions are due to different peak contrasts in these patterns. Additionally, the MAE from a square wave grating as the test pattern is not accompanied by a significant concurrent shift in the apparent position. Linear system theory cannot predict the magnitude of the MAE using complex gratings. The spatial features of a test stimulus, such as position reliability or luminance uniformity, strongly influence the magnitude of MAE. Sharp edges and local luminance uniformity can greatly reduce MAE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion in depth from interocular velocity differences revealed by differential motion aftereffect

There are two possible binocular mechanisms for the detection of motion in depth. One is based on disparity changes over time and the other is based on interocular velocity differences. It has previously been shown that disparity changes over time can produce the perception of motion in depth. However, existing psychophysical and physiological data are inconclusive as to whether interocular vel...

متن کامل

Motion adaptation shifts apparent position without the motion aftereffect.

Adaptation to motion can produce effects on both the perceived motion (the motion aftereffect) and the position (McGraw, Whitaker, Skillen, & Chung, 2002; Nishida & Johnston, 1999; Snowden, 1998; Whitaker, McGraw, & Pearson, 1999) of a subsequently viewed test stimulus. The position shift can be interpreted as a consequence of the motion aftereffect. For example, as the motion within a stationa...

متن کامل

Aftereffect of high-speed motion.

A visual illusion known as the motion aftereffect is considered to be the perceptual manifestation of motion sensors that are recovering from adaptation. This aftereffect can be obtained for a specific range of adaptation speeds with its magnitude generally peaking for speeds around 3 deg s-1. The classic motion aftereffect is usually measured with a static test pattern. Here, we measured the m...

متن کامل

Auditory Motion Elicits a Visual Motion Aftereffect

The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence audit...

متن کامل

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2004